about the language CS3120

Java

about the language

Object-Oriented

Object-oriented programming (OOP) concerns itself with a particular type of data structure
generally referred to as an object.

Definition For our purposes, an object may be regarded as: (1) a set of variables which
determine the object’s state and (2) a set of methods which define the object’s behavior.

The conglomeration of variables and methods form the blueprint of an object, so to speak.
This blueprint is the definition of a class. We say that an object belongs to — or, is a member
of — a class if it is defined by the blueprint for that class. Furthermore, an object’s type is
given by the name of the class to which it belongs.

class Carpet { // an object of type: Carpet
boolean clean, magic; Carpet aladdinsCarpet = new Carpet();
int altitude = O;
// changing state directly

void clean() { aladdinsCarpet.magic = true;
clean = true;
} // changing state indirectly
aladdinsCarpet.clean();
void fly() { aladdinsCarpet.fly();
if (magic)
altitude += 10;
}
void land() {
if (magic)
altitude = 0;
}

From a single class, we can create many objects (each considered to be of the same type).
Each object of a particular type has its own state, while all objects of the same type have
the same behavior. In other words: objects of the same type share behavior and differ in state.

Java is considered to be a highly object-oriented language. This is because all program activ-
ity occurs within a class. That is to say: all — well, almost all — source code is written within
a class definition.

Object-oriented programming generally adopts a particular philosophy with regard to lan-
guage design. Some of the defining principles of object-oriented programming are:

- Encapsulation binds code and data together and allows the programmer to regulate
access to information.

- Polymorphism allows the programmer to define a general method that is implemented
by various classes. Each class that implements that method then has the freedom to
defines its behavior as needed.

- Inheritance is the ability for one class (the child) to inherit the variables and methods
of another class (the parent). This allows for a hierarchical classification of types.




about the language CS3120

Portable

Java’s portability ensures that Java code does not have to be recompiled for different com-
puter architectures or operating systems. This is acheived through an intermediary phase
between compilation and execution. Java source code is first compiled into Java bytecode.
The bytecode is then interpreted by the Java Virtual Machine (JVM). Implementations of
the JVM differ according to architecture and operating system, but all implementations of
the JVM can run any bytecode. This means that a Java program has to be compiled only
once in order to run on any machine that has the JVM installed.

Traditional Compilation

source
outputy outputa outputs ce outputy
cpu cpu2 cpus cee cpun,

Java Compilation

source

output

cpul cpuz cpus e cpun

Aside from the obvious gains portability offers to programmers, it also promotes web develop-
ment. This is because software which resides on a server may, for instance, exploit the client’s
processing power to execute code without concern for differing architectures or operating sys-
tems — i.e. the code doesn’t have to be recompiled for each client machine. This idea finds
its initial form in the Java applet — an application that runs within the context of a Java
compatible web browser and is automatically downloaded and executed. Of course, allowing
unknown code to execute on one’s machine is a serious security concern which the designers
of Java had to resolve.

Secure

Java’s security is inherently tied to its portability. Since all Java programs are executed within
the context of the JVM, constraints can be placed on code during runtime.




about the language CS3120

The JVM has a bytecode verifier which ensures that operations which are potentially unsafe
cannot be performed. For instance, the JVM ensures that code only branches to locations
within the same method. It also enforces strict bounds checking, data initialization, and type
safety. Furthermore, the Java language does not provide the programmer with a means to
perform pointer arithmetic as well as manual memory allocation both of which are notorious
for creating security vulnerabilities.

Dynamic

Java is a highly dynamic language with regards to its memory management. Memory for
primitive types is allocated statically, while all other memory is allocated dynamically with a
call to the new operator. This includes the allocation of arrays of primitive types, as arrays are
implemented as objects in Java. However, Java implements a garbage collector which takes
care of memory deallocation and compaction, making memory management very simple for
the user.




