
Assignment 3 CS3120

Find

This assignment will emulate the UNIX tool: find. find provides lots of functionality, but
primarily we will be concerned with the search by filename. You will design a class called
Find which will mimic this particular function. It will be given a filename and a particular
starting point in a directory tree and it will search through the tree for any files with the given
name. Your Find class will be packaged in the cli package from the previous assignment and
make use of your FileList class, so it is important that you complete the previous assignment
before beginning this one.

Commmand Line Behavior

Your Find class should implement a main() method, so that it can be run from the command
line. If no arguments are given, then it simply displays the entire directory tree starting from
the current directory. All displayed names will be shown in canonical form. This last part
is slightly different than the UNIX find command. In the traditional find the filenames are
displayed with names relative to a search point as opposed to being in canonical form – we
will not emulate this aspect of find. To see this difference, you can compare the system find

to the Java version that I have written as an example.

Consider the following directory structure:

michael.g/

f.txt

dir one/

file.txt

otherfile.txt

dir two/

anotherfile.txt

file.txt

Assuming that we are located in the directory: michael.g/, running the Find class from the
command line with no arguments yields the following output:

[user@notnotbc]$ pwd

/CS3120/MW2/michael.g

[user@notnotbc]$ java cli.Find

/CS3120/MW2/michael.g/f.txt

/CS3120/MW2/michael.g/dir_one/

/CS3120/MW2/michael.g/dir_one/file.txt

/CS3120/MW2/michael.g/dir_one/otherfile.txt

/CS3120/MW2/michael.g/dir_one/dir_two/

/CS3120/MW2/michael.g/dir_one/dir_two/anotherfile.txt

/CS3120/MW2/michael.g/dir_one/dir_two/file.txt

[user@notnotbc]$

If an argument is given, then Find uses that as the root of the directory tree through which
to search. For instance, if the directory dir two/ is given as the first argument, then all the
files in that directory tree are displayed:

[user@notnotbc]$ pwd

/CS3120/MW2/michael.g

[user@notnotbc]$ java cli.Find dir_one/dir_two/

/CS3120/MW2/michael.g/dir_one/dir_two/anotherfile.txt

/CS3120/MW2/michael.g/dir_one/dir_two/file.txt

[user@notnotbc]$

1



Assignment 3 CS3120

Furthermore, your Find class should account for a single command-line option:

-name : proceeding argument specifies the name to match

The argument given after -name will be used as the name for which Find is searching. Only
files which match the string given after the -name option will be displayed in the output. For
instance, consider the scenario in which we are searching for all files named file.txt in the
directory tree with root at michael.g/:

[user@notnotbc]$ pwd

/CS3120/MW2/michael.g

[user@notnotbc]$ java cli.Find -name file.txt

/CS3120/MW2/michael.g/dir_one/file.txt

/CS3120/MW2/michael.g/dir_one/dir_two/file.txt

[user@notnotbc]$

Notice that all files named file.txt are displayed. This feature can also be used in conjunction
with the previous one – i.e. you may specify the root of a directory tree (as opposed to using
the current directory).

[user@notnotbc]$ pwd

/CS3120/MW2/michael.g

[user@notnotbc]$ java cli.Find dir-one/dir_two/ -name file.txt

/CS3120/MW2/michael.g/dir_one/dir_two/file.txt

[user@notnotbc]$

Again, all files named file.txt are displayed; however, this time, we have started the search
deeper down the directory tree so we do not see the file.txt which is located in dir one/.

If no files match the specified name, then nothing is displayed. For instance, consider the
following search:

[user@notnotbc]$ pwd

/CS3120/MW2/michael.g

[user@notnotbc]$ java cli.Find -name hello

[user@notnotbc]$

Finally, if no argument proceeds -name then an error message should be displayed stating so.
The same should be done if an unrecognized option is given:

[user@notnotbc]$ java cli.Find -name

Find: missing argument to -name

[user@notnotbc]$ java cli.Find -r

Find: Error: unrecognized option: -r

[user@notnotbc]$

Minimum Requirements

The class should contain: a single private constructor, a public static method in() that
returns a FileList object and a main() method. It must also be packaged in: cli. This
means you should use the same directory in your submissions/ directory that you created for
FileList.

Below is the skeleton of the Find class to which your code must conform. You are free to
add any helper functions as you wish, but they must be private. Remember that any public

methods are part of the API in virtue of being public.

2



Assignment 3 CS3120

package cli;

public class Find {

// constructor

private Find();

// methods

public static FileList in(String path, String name)

throws FileNotFoundException, SecurityException;

public static void main(String[]);

}

Find API

public static FileList in(String path, String name)
throws FileNotFoundException, SecurityException

Not quite a static factory method, but something similar. It is given a path and a name and
it returns a FileList object containing all the files in the directory tree rooted at path which
match the string given by name. If name equals the empty string – i.e. name.equals("") ==

true – then all files in the directory tree rooted at path are put into the FileList object.
This is the equivalent of running Find from the command line without the -name option (see
section above).

This method should not explicitly throw any exceptions. Exceptions should only be a by
product of creating a FileList object. Keep in mind that the FileNotFoundException should
only ever happen if the path given does not exist. The SecurityException may happen at any
point during the descent of the directory tree. You may simply catch the SecurityExceptions
and ignore them, if you like. In other words, a FileNotFoundException should cause your
program to halt, while a SecurityException should not.

public static void main(String [] args)

Parses command line arguments according to the guidelines given in the previous sections.
Usage is as follows:

java Find [path] [-name pattern]

This means Find may be initiatied with any of the following conditions:

(1) no path, no pattern (contents in dir. tree rooted at current dir.)
(2) path, no pattern (contents in dir. tree rooted at given path)
(3) no path, pattern (contents in dir. tree rooted at current dir. that match given pattern)
(4) options, arguments (contents in dir. tree rooted at given path that match given pattern)

Your code may ignore any extraneous text.

After parsing the command line arguments, main() should create a FileList object using the
in() method. It should then pass this FileList object to the format() method which should
return a List<String>. This List<String> may be printed one at a time to the console, or
joined with String.join() and then printed all at once.

3



Assignment 3 CS3120

Extra Credit

You may earn extra credit for any of the following improvements on your FileList class:

(1) Implement a fuzzy finding feature as was described in the extra credit section for the
FileList class. This would only apply to the pattern associated with the -name option:

java Find -name *.txt

java Find -name file.???

(2) Display messages embedded into the output that inform the user of directories that were
not searched because of permissions errors for that particular directory. This behavior is
exhibited in the traditional find command which is available on the class server.

(3) Implement another command line option: -prune. This option is immediately proceeded
by an argument similar to that which proceeds -name; however, the argument proceeding
-prune is a pattern which specifies directories which should not be searched. For instance,
consider the following command:

java Find -name Foo -prune Bar

The command above would search through the directory tree rooted at the current working
directory for any files called Foo and would not search any through any directories called Bar.

Remember that the name of the file must be the same as the name of the class with .java

appended to it. In other words, your file should be named Find.java.

Since it is packaged with the cli package, it must be in a directory named: cli. Submit
your assignment by copying a directory named: cli along with the Find.java file into your
personal submissions directory. There is no need to place the Find.class file in the directory.

4


